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Abstract

A finite element model of a structure provides a fine knowledge of the response but such a model may lead to a loss of a

global comprehension of the structural behaviour. That is why the anti-oscillator model (AO model), that may be derived

from a finite element model, was developed. The mass and stiffness matrices are required but they often can not be

retrieved easily in the commercial softwares. This paper shows how to overcome this problem and finally how to avoid a

numerical model of a structure to derive the AO characteristics.

In fact, it is shown that the AO characteristics and the apparent mass frequency response function (FRF) are closely tied.

Indeed, the AO mass are the residue of the partial fraction decomposition of this FRF, while AO frequencies are the poles.

Consequently, the AO characteristics can easily be derived from an experiment which allow the determination of the

apparent mass FRF.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The most commonly used technique to model a structure is the finite element method [1]. This method is
very general and may be used to solve different kind of problems such as static problems, modal analysis and
stability analysis. Nevertheless, such a modelling may lead to a lot of degrees-of-freedom (dof) whereas,
sometimes, few dof are sufficient. This may lead to a non-efficient model. A new approach has been proposed
recently to transform a finite element model to an efficient model based on the anti-oscillators (AOs) [2].

The AOs are linked to the antiresonant frequencies [3] and to the shapes associated with these frequencies. It
was not new to use such an information to update a model [4–6] and then to improve the knowledge of a
system; the antiresonant frequencies have been used for crack detections in beams as well [7]. Nevertheless,
these studies did not use the antiresonances to directly model a structure until the work reported by Jacquelin
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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et al. [2] which introduced the notion of AOs. An application of the AO model had been done by Pashah et al.
in Ref. [8] to understand and forecast the behaviour of impacted structures.

Nevertheless, in Ref. [2] a first model of the structure is required to identify the AO characteristics. So, this
first model must be updated carefully to derive a good AO formulation. This paper shows how to derive the
parameters of this new model experimentally by measuring an apparent mass frequency response function
(FRF) so that the first model is avoided.

In the following, the AOs are presented first. Particularly the AO characteristics are defined from the mass
M and stiffness K operators (or matrices) which are supposed to be known. The determination of the AO
parameters from an FRF without any model is then undertaken. Finally, some examples are given to show the
efficiency and the simplicity of the method.

2. The anti-oscillator model

The AO model is briefly described in this section where no proof is given; more information may be found
in Ref. [2].

When an action effect acts on a structure at a point P in a given direction, the response changes if the load
direction or the point location change. Consequently, the ‘‘best’’ model of a structure depends on the location
and the direction of the action effect. The AO formulation was proposed to consider that remark. Then the
AO formulation is attached to a point P and to a given direction, i.e. to a given dof i0 of the studied structure.
This description is particularly appropriate for impact problems, when the impact location and direction were
known [8]. Nevertheless, this approach is more general and may be used with all kinds of loads and, above all,
it explains how the structure globally behaves when excited along a specific dof.

2.1. Static, constraint and residual modes

2.1.1. Static mode

The static mode fst is the shape of the structure when a load F st is applied, such that fst i0
is equal to unity

(see Fig. 1). Note that for the statically indeterminate structures fst is a rigid body mode.

2.1.2. Constraint modes

The constraint modes fi, oAR i are the eigenmodes of the structure submitted to an extra boundary
condition (see Fig. 1):

fii0
¼ 0. (1)

Then the eigenfrequencies oAR i are the antiresonant frequencies of the structure [3] which depend on i0.

2.1.3. Residual mode

The residual mode f0 is spanned by the static mode and by the constraint vectors and is such that the
residual mode is orthogonal to each constraint vector with respect to the mass operator. Then f0 verifies:

f0 ¼ fst �
Xþ1
i¼1

cifi. (2)
Fig. 1. Static and constraint modes of a beam.
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The coefficients ci may easily be determined, owing to the orthogonal property between f0 and the constraint
modes ffigi¼1::þ1.

2.1.4. Kinematic description

The static and the residual modes were introduced for two main reasons:
�
 when a structure is loaded by a quasi-static excitation in the direction of the dof i0, the model must allow
for the static stiffness: the AO model allows the determination of such a static stiffness thanks to the static
mode;

�
 when a structure is loaded by an excitation, which is dynamic in nature, in the direction of the dof i0, the

inertia effects act against the action effect to prevent the motion of the dof i0; so, at least during the very
beginning of the impact, the inertia effects act as an extra boundary condition. Therefore, the
displacement should be well described by the constraint modes.
The idea was then to expand the solution in terms of the static and the constraint modes. Unfortunately, the
static mode cannot be orthogonal to the constraint modes. So, the displacement X was expanded in terms of
the residual and the constraint modes, i.e. in terms of a sum of orthogonal functions with respect to the mass
operator:

X ðtÞ ¼
Xþ1
i¼0

qiðtÞfi. (3)

The discretization was achieved by truncating the expansion (3) at the rank N:

X ðtÞ ’ X dðtÞ ¼
XN

i¼0

qiðtÞfi. (4)

2.2. The anti-oscillators

The discretized displacement (4) may also be written as

X dðtÞ ¼ q0ðtÞf0 þ
XN

i¼1

qiðtÞfi

¼ l0ðtÞc0 þ
XN

i¼1

ðliðtÞ � l0ðtÞÞci, ð5Þ

where

l0ðtÞ ¼ q0ðtÞ; c0 ¼ fst,

liðtÞ ¼
qiðtÞ

ci

; ci ¼ cifi. ð6Þ

Actually, this change of variable was very interesting because it led to a representation of any structure
with N single-dof systems ðmi; kiÞi¼1::N lying on a single-dof system ðm0; k0Þ. The degrees of freedom
were then the N þ 1 parameters fligi¼0::N . The single-dof systems ðmi; kiÞi¼1::N were referred to be
‘‘anti-oscillators’’ [2]. In fact Eq. (5) indicates that l0 is equal to the dof of interest, i0 due to the definition
of the ci functions.

In Ref. [2] it was shown that the masses represented in Fig. 2 may be expressed as:
�
 for i40:

mi ¼Mðfi;fiÞc
2
i ¼

Mðfst;fiÞ
2

Mðfi;fiÞ
, (7)
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Fig. 2. Model of a structure impacted by another structure.
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�
 for i ¼ 0:

m0 ¼Mðfst;fstÞ �
XN

i¼1

Mðfst;fiÞ
2

Mðfi;fiÞ
¼ mst �

XN

i¼1

mi, (8)
where M is the mass operator (i.e. the mass matrix for discretized system).
Likewise, the stiffnesses fkigi¼0���N can be identified:
�
 i ¼ 0:

k0 ¼ Kðc0;c0Þ ¼ Kðfst;fstÞ. (9)

Then,
� for statically determinate structures, k0 is the static stiffness.
� for statically indeterminate structures (i.e. fst is a rigid body eigenshape), k0 ¼ 0.

�
 i ¼ 1 � � �N:

ki ¼ o2
AR imi. (10)
In the following the AOs will be sorted on the basis of their frequency so that the frequency increases with
the ascending number of AOs.
3. The AO parameters and the apparent mass FRF

Ewins FRF [9] defined the apparent mass FRF as the inverse inertance. The point apparent mass FRF
associated with the dof l0 will be used in that paper.

Considering a harmonic force applied in the direction of the displacement l0 which is the ith0 dof:

f hðtÞ ¼ Fhe
jot. (11)

Each component liðtÞ of the displacement given by Eq. (5) is harmonic as well and may be written as
following:

8iX0; liðtÞ ¼ Lie
jot. (12)
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By considering Fig. 2, the dof verify the following equations:
�
 i40:

mi
€liðtÞ þ kiðliðtÞ � l0ðtÞÞ ¼ 0. (13)

Relation (11) leads to:

�o2miLi þ kiðLi � L0Þ ¼ 0. (14)

As o2
AR i ¼ ki=mi, this equation may be rewritten as

Li ¼
L0

1� ðo2=o2
AR iÞ

. (15)
�
 i ¼ 0:

m0
€l0ðtÞ þ k0l0ðtÞ �

XN

l¼1

kiðliðtÞ � l0ðtÞÞ ¼ f hðtÞ. (16)

Eqs. (11) and (15) lead to:

�o2m0L0 þ k0L0 �
XN

l¼1

ki

1

1� ðo2=o2
AR iÞ
� 1

� �
L0 ¼ Fh. (17)
Then the point dynamic stiffness FRF is

Fh

L0
¼ �o2m0 þ k0 þ

XN

l¼1

�o2mi

1� ðo2=o2
AR iÞ

(18)

The point apparent mass FRF Mapp, which is the requested FRF for this study, may be deduced:

Mapp ¼
Fh

G0
¼

F h

�o2L0
¼ m0 �

k0

o2
þ
XN

l¼1

mi

1� ðo2=o2
AR iÞ

(19)

where the acceleration is €l0ðtÞ ¼ �o2L0e
jot ¼ G0e

jot.
This result shows that it is possible to determine the AO parameters from experiments:
�
 k0 is determined from a static test with a static force applied at P in the direction of the dof i0 (see Fig. 1);
alternatively, k0 is the amount of the dynamic stiffness FRF when o is equal to zero.

�
 mst is determined from the Mapp FRF:

mst ¼ m0 þ
XN

l¼1

mi ¼Mappðo ¼ 0Þ þ
k0

o2
. (20)

Note that for the indeterminate structures, k0 ¼ 0 and the ‘‘static’’ mass is the rigid body mass:

mst ¼ m0 þ
XN

l¼1

mi ¼Mappðo ¼ 0Þ. (21)
�
 The antiresonant circular frequency oAR i are the poles of the Mapp FRF;

�
 mi is identified as the residue associated with the pole oAR i of the Mapp FRF;

�
 m0 is then deduced as

m0 ¼ mst �
XN

i¼1

mi.
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his method will be applied in the following to derive the AO parameters from either numerical or
T
experimental FRF.

4. Free–free bar: numerical experiment

The studied system was an indeterminate structure in which the bar was made of steel and of circular cross
section. The material and geometrical properties of the bar are given in Table 1.

4.1. Anti-oscillator characteristics from an FE model

The AO parameters from a finite element model were determined firstly from the mass and stiffness matrices
as explained in Ref. [2]. The bar was discretized in ne 2-node elements, with one dof per node and linear
interpolation for the displacement. n was the total number of dof. The AO parameters were associated with
the ith0 dof. Then, a reduced mass matrix Mred and a reduced stiffness matrix Kred can be derived from the mass
matrix M and the stiffness matrix K by replacing the ith0 row and the ith0 column by a row and a column filled
with zeros in each matrix. The constraint modes fUi;oAR igi¼1::n are the modes obtained from the reduced
mass and stiffness matrices. The static mode Ust is actually the rigid-body mode of the structure. Then the AO
parameters are evaluated as following:

ci ¼
Ut

iMUst

Ut
iMUi

(22)

U0 ¼ Ust �
Xn�1
i¼1

ciUi (23)

mst ¼ Ut
stMUst (24)

mi ¼ c2i U
t
iM

redUi ¼
ðUt

iM
redUstÞ

2

Ut
iM

redUi

(25)

k0 ¼ Ut
stKUst (26)

ki ¼ o2
AR imi (27)

The characteristics of the five first AOs were listed in Table 2. In fact, the ‘‘static’’ mass was the bar mass
mst ¼ 1:73 kg and the stiffness k0 was zero (statically undetermined structure).
1

erties of the bar

Pa) r ðkgm�3Þ d (mm) L (mm)

7800 30 313

2

acteristics of the AO bar model

umber 1 2 3 4 5

mi (g) 1398.8 155.4 56.0 28.5 17.3

uency f AR (kHz) 4.14 12.44 20.74 29.07 37.43
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4.2. Anti-oscillator characteristics from the mass FRF

The FRF was built from the eigenmodes fWi;Oigi¼1::n derived from the mass and stiffness matrices. In the
following, the eigenvectors were normalized with respect to the mass matrix. First the following FRF was
evaluated:

H ¼
LO

F h

¼
Xn

i¼1

W2
ii0

O2
i � o2 þ 2xoOi

, (28)

where x is the dimensionless damping ratio.Cii0 indicates that H is a point FRF associated with the i0 dof. H is
a sum of rational functions then H may be written as

H ¼
NH ðoÞ
DH ðoÞ

, (29)

where NH and DH are two polynomials.
The apparent mass Mapp is the inverse of H divided by ð�o2Þ:

MappðoÞ ¼
DH ðoÞ
�o2NH ðoÞ

. (30)

So Mapp is a rational function: the numerator and the denominator may be identified from an experimental
curve. A partial fraction decomposition of the apparent mass Mapp (30) is then achieved. Eq. (19) shows that
the residue associated with a pole, which is the ith antiresonant frequency, is the mass mi.

4.3. Results

The apparent mass FRF was sketched in Fig. 3 for a damping ratio equal to zero.
Eq. (28) indicates that H is a function of the damping ratio x. Consequently, the identified AO parameters

should depend on x. Therefore, the sensitivity of the results with respect to the damping ratio has to be
addressed. This is the reason why several sets of parameters had been identified for several damping ratios.
Table 3 shows that there is almost no influence of the damping ratio on the AO parameters. Moreover, in each
case for o ¼ 0 the apparent mass is equal to the mass of the bar, mst ¼ 1726 g, that is the rigid body mode
mass. The identified parameters are the same as the ones previously calculated and listed in Table 2.
0 5 10 15 20 25 30 35 40
10−6

10−4

10−2

100

102

104

106

A
p
p
a
re

n
t 
M

a
s
s
 (

k
g
)

Frequency (kHz)

ξ = 0

Fig. 3. Free–free bar: apparent mass FRF modulus ðx ¼ 0Þ.
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Table 3

Identified AO characteristics for several damping ratios

x ¼ 0% x ¼ 0:5% x ¼ 5%

mi (g) f AR i (kHz) mi (g) f AR i (kHz) mi (g) f AR i (kHz)

1 1398.8 4.14 1398.4 4.14 1399.6 4.15

2 155.3 12.44 155.2 12.44 155.4 12.44

3 55.5 20.74 55.9 20.74 55.9 20.74

4 28.5 29.07 28.6 29.07 28.5 29.07

5 17.3 37.43 17.3 37.43 17.3 37.43

Table 4

Properties of the beam

E (GPa) r ðkgm�3Þ d (mm) I ðcm4Þ L (mm)

70 2400 20 1.33 1000

Table 5

Characteristics of the AO simply supported beam

AO number 1 2 3 4 5

Mass mi (g) 251.5 79.0 38.9 23.5 15.8

Frequency f AR (Hz) 310 1040 2289 4207 7028

mst (g) 464.7

k0 ðkNm�1Þ 44.86

E. Jacquelin et al. / Journal of Sound and Vibration 312 (2008) 630–643 637
This example showed that, for a system with a rigid body mode, the numerical point apparent mass FRF
was enough to identify the parameters associated with the AO model.

5. Pinned–pinned beam: numerical experiments

In this case, the simply supported beam made of aluminium and of a square cross-section was a determinate
structure. The geometry and material characteristics are listed in Table 4.

The procedure is undertaken in the same way as in the previous section where the AO characteristics are
determined first from the mass and stiffness matrices and then from the apparent mass FRF.

5.1. Anti-oscillator characteristics from a FE model

The beam was discretized in 20 finite elements. The element used was a Timoshenko beam element, that is
with a linear interpolation for the displacement and the rotation, and with two dof per node. The model had
40 dof. The reduced mass and stiffness matrices were then derived from the mass and stiffness matrices. The
constraint modes were then obtained by solving the eigenproblem associated with (K red, Mred) and finally, the
AO characteristics were calculated from Eqs. (22)–(27). The results are given in Table 5.

5.2. Anti-oscillator characteristics from the mass FRF

The FRF were obtained from the eigenmodes of the mass and stiffness matrices, as explained in the
previous section. The FRF H given by Eq. (28) is used to determine the static stiffness k0:

Hðo ¼ 0Þ ¼
1

k0
. (31)
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Fig. 4. Simply supported beam: apparent mass FRF modulus ðx ¼ 0Þ.

E. Jacquelin et al. / Journal of Sound and Vibration 312 (2008) 630–643638
Similarly, the static mass is derived from the apparent mass FRF, Mapp:

lim
o!0

MappðoÞ þ
k0

o2
¼ mst. (32)

In fact, the actual apparent mass FRF was not suitable to work with due to the asymptote tending to
infinity as frequency tends to zero (see Fig. 4). So the modified apparent mass FRF, Mmod, defined as
following, was more appropriate because the singularity is then removed:

Mmod
app ¼Mapp þ

k0

o2
¼ m0 þ

XN

l¼1

mi

1� ðo2=o2
AR iÞ

(33)

The modified mass FRF is defined even for o equal to zero:

Mmod
app ðoÞ ¼ mst. (34)

This modification increased the accuracy of the N and D polynomial identification. The sensibility of the
results with respect to the damping ratio was addressed as well. As observed for the bar in the previous section,
it has been verified, that, for this case, there is almost no influence of the damping ratio on the identified
parameters.

6. Actual experimental identification of the AO characteristics

The last two examples worked very well, but the data were from numerical simulations and were not
influenced by any noise. In this section a pinned–free beam and a pinned–pinned beam are studied. These
examples will deal with both determinate and indeterminate structures.

The acceleration was measured with a B&K 4393 accelerometer and a Nexus conditioner while the force was
measured with a B&K 8200 transducer force associated with a B&K 2626 conditioner. A Siglab analyser was
used to obtain the FRF (the dynamic apparent mass). The sampling frequency was 25.6 kHz.

6.1. Pinned– free (P– F) beam

The studied beam was a cylinder (radius R, length L) made of steel. The pinned support is positionned
19mm from one end; L is the length if the beam and R is the radius. The geometry and material characteristics
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are listed in Table 6. The OA were associated with a measurement point which was 410mm from the axis of
rotation.

The experimental curve is given in Fig. 5: the peaks give the antiresonant frequencies and the zeros give the
resonance frequencies. The AO masses were identified as described previously. The AO characteristics are
given in Table 7.

Eq. (19) shows that, in that case, the apparent dynamic mass must have a horizontal asymptote when the
frequency tends to zero that gives the ‘‘static mass’’ mst (actually mst is a rigid body mass). Indeed
experimentally the horizontal asymptote was observed (see Fig. 6) and mst was identified (see Table 7).
A direct evaluation of the rigid body mode led to mst ¼ 186 g which is closed to the value identified and given
in Table 7.

The identified apparent mass FRF was plotted in Fig. 5. The figure shows that the identified AO parameters
allowed good reconstruction of the experimental apparent mass FRF.
6.2. Pinned– pinned (P– P) beam

The studied beam was similar to the P–F beam except for the length (see the characteristics listed in
Table 8). The OA parameters were associated with a measurement point located at the mid-length. In fact, this
beam was not a pure simply supported beam which may be easily seen from the experimental eigenfrequencies.
This is essentially due to vertical stiffness induced by the movement of the ball bearing assembly at the ends of
the beam (see Fig. 7). Moreover, both bearing assemblies are not fully constrained to avoid the nonlinear
effects due to tensile load: the beam can move in a groove made in the bearings.

The experimental curve is given in Fig. 8. The AO masses were identified as described previously. The AO
characteristics are given in Table 9.
Table 6

Properties of the P–F beam

E (GPa) r ðkgm�3Þ R (mm) L (mm)

210 7800 6 500
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Fig. 5. P–F beam apparent mass FRF modulus: experiment FRF (—–) and identified AO FRF (- - -).
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Fig. 6. P–F beam: zoom of the apparent mass FRF (real part).

Table 7

AO characteristics of the P–F beam

AO number 1 2 3 4 5 6 7 8

Mass mi (g) 15 42.9 44.6 16.8 7.5 1.4 1.1 0.8

Frequency f AR (Hz) 173 455 758 1296 2141 3286 4406 4463

mst (g) 185

k0 ðkNm�1Þ 0

E. Jacquelin et al. / Journal of Sound and Vibration 312 (2008) 630–643640
Eq. (19) shows that, in that case, the apparent dynamic mass tends to infinity when the frequency tends to
zero. This fact was experimentally observed as shown in Fig. 8. This makes the identification more difficult. In
Section 5, that was overcome due to the knowledge of the static stiffness k0. Unfortunately an experimental
FRF is not as ‘‘perfect’’ as a numerical FRF, especially in the low frequency domain. In this case, the use of
the modified apparent mass FRF was not appropriate. A solution was to multiply Eq. (19) by o2 and to obtain
the dynamic stiffness FRF:

Kdynðo2Þ ¼ �k0 þ o2 m0 þ
XN

l¼1

mi

1� ðo2=o2
AR iÞ

 !
(35)

which had the following asymptote toward zero:

Kasymðo2Þ ¼ �k0 þ o2 m0 þ
XN

l¼1

mi

 !
¼ �k0 þ o2mst. (36)

The slope of this asymptote is the static mass, and the absolute value of Kasymðo2 ¼ 0Þ provides the static
stiffness. These parameters have been identified from Fig. 9 and are given in Table 9. By considering the static
mode fst, mst may be determined:

mst ¼

Z L

0

rSf2
stðxÞdx ¼ 17=35mbeam ¼ 182 g, (37)

where fstðxÞ ¼ �4ðx=LÞ3 þ 3ðx=LÞ for x 2 ½0;L=2� and fst is symmetric with respect to the mid-span section.
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Table 8

Properties of the P–P beam

E (GPa) r ðkgm�3Þ R (mm) L (mm)

210 7800 6 423

Fig. 7. The pinned–pinned beam.
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Fig. 8. P–P beam apparent mass FRF modulus: experiment FRF (—–) and identified AO FRF (- - -).

Table 9

AO characteristics of the P–P beam

AO number 1 2 3

Mass mi (g) 8.2 2.92 0.76

Frequency f AR (Hz) 594 1537 3308

mst (g) 180

k0 ðkNm�1Þ 800
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This proves the accuracy of determining mst with the described method. The static stiffness can also be
derived from mst and the first eigenfrequency f 1 ðf 1 ¼ 107HzÞ:

k0 ¼ ð2pf 1Þ
2mst ¼ 813 kNm�1. (38)

The discrepancy with the value given in Table 9 is around 1%.
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The identified apparent mass FRF was plotted in Fig. 8 which shows that the identified AO parameters
allowed good reconstruction of the experimental apparent mass FRF up to 3300Hz. To decrease
the discrepancy beyond 3300Hz, more AOs are required. They can be identified with the part of the FRF
beyond 3300Hz.
7. Conclusion

The AO model defined in a previous paper [2] was associated to a first model of the studied structure.
Accordingly the quality of that model depends on another model. A direct identification of the AO parameters
was proposed in this paper to avoid a dependence on a model. This method required the experimental
determination of a point apparent mass FRF which may be carried out easily. This point FRF is measured at
the location and the direction associated with the required AO. This FRF is a rational function and the first
step to get the AO characteristics is to identify that rational function. A partial fraction decomposition of the
point apparent mass FRF is then achieved. The residues of the decomposition are the AO masses and the
poles are the antiresonant frequencies.

The only difficulties arose to identify the static stiffness and the static mass. For indeterminate structure, the
static mass is the y-intercept of the FRF curve and it may be obtained by drawing the asymptote of the FRF
when the frequency tends to zero. For determinate structure the apparent mass FRF has a singularity at zero.
So, a solution to identify the static stiffness and the static mass is to use the dynamic stiffness FRF which has
an asymptote when the frequency tends to zero. The slope of this line is the static mass while the static stiffness
is the y-intercept.

Consequently, this paper shows that it is possible to build easily a model of a structure with a basic
experiment. Moreover, the parameters of this model give some a priori information on the impact behaviour
of the structure as indicated in Ref. [8]. So the AO model is useful not only to simulate the response of a
structure but also to understand how a structure behaves when impacted.

As the AO parameters may be experimentally and numerically obtained, it is then possible to have a new
indicator of the accuracy of a model by comparing the AO parameters of both models. This may be explored
in the future by researchers interested in updating structures.
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